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Why study I-phase?

• L-H transition physics is critical for the power threshold scaling

and heating requirement in future reactors, ITER

• Usually, L-H transition happens very fast (<1ms), it needs high

time-spatial resolution diagnostics to find possible relationships

among turbulence, zonal flow and ∇P, etc

• Theoretical predication, heating power is near L-H transition

threshold (slow L-H transition), plasma may pass by an

intermediate phase or I-phase (oscillation between L and H)

• I-phase with a limit cycle oscillation (LCO, finite oscillation

frequency) extends the time scale to study the causality
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LCO: marginal power
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• HL-2A: NBI power=1.0 MW
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LCO provides chance to study causality
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JFT-2M (PRL, 2013)

EAST (Xu, NF2014)

� LCO widely observed in TJ-II,AUG/DIII-D/JFT-2M (f=1-5 kHz)

� Different rotation  might be correlated with the measured location (TJ-II/DIII-D)

Different rotation of LCOs 

DIII-D  (Schmitz, NF2014)

TJ-II  (Estrada, PRL (2011)
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Inverse rotation (CCW) of LCOs

� LCO direction depending on the radial position (propagation of turbulence)

� Turbulence leads the process giving rise to an increase in the ExB flow shear

� Amplitude of Er in phase with ∂Er/∂r at this radial position
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– Turbulence induced flow insufficient to sustain H mode

– H-mode locked in by rise in ion diamagnetic flow

– See ∇∇∇∇P term start to lead drive to wExB rotation

Role of Ion Diamagnetic Flow in L-H Transition

L
mode
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Inverse LCO at inner shear layer?

� LCO rotation dependent on radial position

� The importance of LCO and its relation to the pressure gradient and turbulence stressed

X.Q. Wu, et al., NF 2014

Z. B. Guo, et al., POP 21 090702 (2014)
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� No LRC was observed in L mode in LCO frequency (<5 kHz)

� The LRC increases when plasma transition form L to I-phase

� LRC has a clear radial propagation (200 m/s)

LCO has characteristics of ZF
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LRC

� Coherence and phase shift estimated by probe D and probe B (toroidal separation ∼5 m)
� LRC (<10 kHz) has a finite radial width
� The frequency width of LRC reduces to f<3-5 kHz, in L-mode the width is f<10 kHz
� The finite wave number reduces, broadening radial width of LRC (<3-5 kHz) in H mode

Spatial structure of LFZF-like on TJ-II

J. Cheng, C. Hidalgo, et al., to be submitted to NF 2015
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Transient transition to H mode on TJ-II

� L-H transition without LCO was observed in the zoomed windows (tL-H=2 ms)
� The GAM disappears prior to L-H transition and transfer entropy rapidly increase across L-H transition
� Er has a jump rise before the L-H transition
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Report on LFZF and LCO

K. Itoh, et al Plasma and Fusion Research, 8, 1102168 (2013)
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Experimental setup on studying edge turbulence 

on HL-2A
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Langmuir probe systems

� There are two fast reciprocating   probe systems 
( W1, W3) and  a fixed probe system (W2)

� The radial scanning distance at W1 and W3 is 8 cm

� The radial reciprocating speed is 0.8-1.0m/s 

� Long range correlation of floating potential can be 
measured by this probe array

Evolution of probe reciprocating movement
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Radial profiles of edge parameters by probe

� Evolution of edge parameters measured by the reciprocating probe system

� LCFS is exactly confirmed by the inverse of <kθθθθ>

� The data in the staying phase is used to analysis spectrum, correlation, etc
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First experimental identification of toroidal 

symmetry of GAMs

• Toroidal symmetry of GAM (geodesic acoustic mode)  confirmed on HL-2A

• The toroidal mode numbers are n~0

• GAM is uniform in a flux surface, which is generated by three-wave interaction

K.J. Zhao,  T Lan, et al 2006 PRL 96 255004

A.D. Liu,  T Lan,  et al 2009 PRL 103 095002
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Combined probe array

� Poloidal probe and radial probe 

� Spatial resolution is 4 mm

� Measured parameters: Is and vf fluctuations
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SOL Turbulence characteristics

� Contour plot of Max. correlation between array A and  Array B

� k// changes sign from negative to positive at ∆∆∆∆dθθθθ~16 mm, where coherency is max

� Frequency spectra at five typical positions (Right Figure)

� Two tips in the same line: significant coherency and zero phase shift below 100 kHz
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Visualization of 2D structures

� Conditional averaged: high correlation and zero phase shift

� Eddies deform, titled and break 

J. Cheng, J.Q. Dong, et al 2013 NF, 53 093008 
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Four-step probe array

, , , , , , ' , ',e e f e r e r eT n n E P E Pφ %

• Sampling rate = 1 MHz

• Spatial resolution= 4 mm

• Diameter of tips is 1.5 mm. 

• Height of  steps is 3 mm. 

• LCFS is identified by EFIT code 

• Measured parameters:

Previous probe Updated probe
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Energy transfer rate and LCO
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� Energy transfer rate: more energy is transferred from turbulence to 

LFZF when heating power increases

� Dynamics of LCO in I-phase M. Xu, G.R. Tynan, et al, 108, 245001, PRL, 2012

J. Cheng, J.Q. Dong, et al, 110, 265002, PRL, 2013

K.J. Zhao, J. Cheng,  et al NF, 2013
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Part I

Characteristics of limit cycle oscillation 

in L-I-H transition 
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Two kinds of LCOs
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� Two kinds of LCO: type-Y (clockwise) and type-J (counter-clockwise)

� Type-Y: turbulence is prior to shear flow (Predator-Prey)

� Type-J: turbulence lags Er, ∇∇∇∇Pe (∇∇∇∇Pi) dominant, critical for I-H transition

� Bi-coherence intensity reduces close to the H-mode
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J. Cheng, J.Q. Dong, et al, 110, 265002, PRL, 2013
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Possible interpretation for two types of  LCOs 

Turbulence

(prey)

Zonal flow

(predator)

Turbulence

(predator)

∇P

(prey)

Er oscillation

For the transfer of type-Y to type-J, 

It seems that ∇P must be large enough !

Type-Y

Type-J

J.Q., Dong, J. Cheng, 25th IAEA FEC,USA, oral talk

Y. Xu, J. Cheng, EPS conference, 2014, invited talk
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Transition from Y- to J-LCO

� Evolution of the magnitude of Er and turbulence in L-I-H transition

� Transition from Y-LCO to J-LCO measured at ∆r=-8 mm 

HL-2A  DATA
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� The coupling of floating potential fluctuations (∆r=-6 mm) at  LCO frequency is weak 
� The -∂Rs/∂r out of phase with Er (pressure gradient)
� Type-J LCO is different with the LFZF

Characteristics of J-LCO

J. Cheng, J.Q.Dong, K. Itoh, et al 54, 114004 NF 2014
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Correlation between ∇∇∇∇Pe and ∂Bθ/∂t
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� Time-frequency spectrum of ∂Bθ/∂t

� Correlation and phase shift of ∇∇∇∇Pe  ∂Bθ/∂t(∆∆∆∆r=-6mm)

� ∂Bθ/∂t amplitude gradually increases in I-phase

� High correlation and zero-phase shift, ∇∇∇∇P=J××××B
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Role of ∇∇∇∇Pe in J-LCO phase
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J. Cheng, et al., the25th IAEA FEC, Russia , EXC/P7-24 (2014)

� The coherent mode with f=13.6 kHz rather than GAM

� The pressure gradient gradually increases in L-I-H , but it remains invariable in L-I-L

� A abrupt rise of shear flow in J-LCO can further reduce turbulence 

� The influence of mode on turbulence is under study
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Characteristics of mode in I-phase

L.W.Yan, J. Cheng, et al., Nucl. Fusion (2015)

� Mode structure observed with SVD method on magnetic fluctuation signals

� This mode has electromagnetic characteristics 

� No clear coupling range in bicoherence spectrum  

Vf

∂Bθ/∂t
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Part II

Role of turbulence-pressure gradient driven flow 

on L-I-H transition
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Inversion of the Rs in I-phase
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� Time-resolved evolution of Lpe
-1, Er and Rs in L-I-H transition

� The measured radial position is inside the separetrix about 6-8 mm

� The Rs reverses L-I and I-phase across Y-J LCO (fLCO=2-3 kHz)

� The Lpe-1 gradually increase and has a rapid rise prior to the I-H transition

J. Q. Dong, J. Cheng, et al, 2014 FEC oral talk
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Time averaged E××××B and diamagnetic flows
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Force balance equation of ions

•( VE-Vdim)/VE > 60% in L-mode & early I-phase  but <10% prior to I-H transition.

•Evolutions of ∂ Vdim/∂ t and VE/Vdim are strongly correlated.

•No evident correlations between ∂Rs/∂r and VE are observed.
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Peak of ∂∂∂∂Vdim/∂∂∂∂t prior to I-H transition

34

� Contrasting the evolution of Vdim and VE in the L-I-H transition

� The ratio of rotation velocity (Vθ,Vϕ) to the VE gradually reduces towards H

� The growth rate of diamagnetic flow has a peak just prior to the I-H transition  

� The gradient of Rs changes sign from positive to negative when L-I transition 
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No peak of PRS/PAT appears prior to H
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� The work done by the diamagnetic force and the Rs force are defined as 

Pdim=∂Vdim/∂tVE, PRS= -∂Rs/∂rVE

� The turbulence has a rapid reduction after the peak of Pdim

� The ratio of PRS/PAT gradually increases close to the H mode

J. Q. Dong, J. Cheng, et al,  submitted (2016)
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The condition for I-H transition

36

� The I-phase has type-J LCO
� The  edge pressure gradient scale length Lpe is less than a critical value 

(~1.7cm), the E×B flow shearing rate is higher than a critical value (~106 s-1) 
� The growth rate of the diamagnetic drift flow  is equal to or higher than the ion-

ion collision frequency
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Part III

Dynamics of H-I-H transition 
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H-I transition stimulated by SMBI

38

1. Evolution of pressure gradient and radial electric field in H-I-H

2. ELM evolves into an oscillation (2.6 kHz)

3. Pressure gradient has a sharp reduction after SMBI

4. Mean pressure gradient is the key for I-H transition

1

2

D
α(a

.u
.)

1 0 , 0 0 0 1 5 , 0 0 0 2 0 ,0 0 0 2 5 ,0 0 0

0 . 4

0 . 6

0 . 8

1

∂P
e
/ ∂

r(
a
.u

.)

5 2 5 5 3 0 5 3 5 5 4 0 5 4 5 5 5 0 5 5 5
-1 . 5

-1 . 0

-0 . 5

t (m s )

E
r(

a
.u

.)

(b )

H -m o d e(a ) I-p h a s e H -m o d e

(c )

S M B I



HL-2AHL-2A

Identification of I-H transition 

39

1.The I-H transition occurs during t=547.2-548 ms

2. After t=547 ms, ne and WE increase, Da also starts to reduce

3. I-H transition happens after t= 546 ms

4. The pulse at t=545-546 ms is LCO rather than the ELM. 
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Type-J LCO with high ∇∇∇∇Pe
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1. Temporal evolution of Da, pressure gradient and |Er| in LCO phase

2. LCO is a finite frequency oscillation (center frequency is 2.6 kHz)

3. The pressure gradient is in phase with |Er|

4. In H-I-H phase,  Er leading turbulence, type-J LCO

J. Cheng, J.Q. Dong, K. Itoh, et al, PRL, 2013
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LCO between turbulence and energy transfer rate
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1. P means energy transfer rate: P=Rs∂Vθ/∂r

2. SMBI induces H-I transition and LCO belongs to J-LCO (high pressure gradient)

3. The cycle between turbulence and energy transfer rate is clockwise rotation

4. The direction is not dependent on the time segment
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Hysteresis in H-I-H transition

42

1. Hysteresis appears in H-I and I-H transition 

2. Er and turbulence or pressure gradient and turbulence show 

the similar results

3. |Er| for I-H transition is larger than that for H-I transition 
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1. For H-I and I-H transition, Rs is in phase with turbulence 

2. For H-I and I-H transition, Rs is out of phase with Er
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Coherent mode appearing before I-H transition
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1. A coherent mode appears with f=12 kHz  

2. The mode appears, meanwhile  its radial particle loss reduces (Dα)

3. The role of a CM on reducing fluctuation amplitude of LCO
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1. The coherent mode appears in SX signals at different radial positions

2. The mode is localized at core plasma and has kink mode characteristic
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1. The turbulence is estimated with density fluctuation in 20-200 kHz

2. Pressure gradient has a strong fluctuation in CM frequency  

3. Different rotations were found at different time segments

4. The phase between pressure gradient and turbulence is 0.7π
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1. The coherent mode crash can reduce the core density and enhance 

the edge density 

2. It is found that Da amplitude reduces when the CM appears 
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Comparison of flows driven by RS and ∇∇∇∇Pe
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1. The acceleration driven by RS is 

expressed as a1=∇Rs

2. The fluctuation amplitude of flow 

driven by RS is 0.01 km/s, that of 

diamagnetic flow is 0.4 km/s 

(assuring Pi=Pe)

3. The amplitude of LCO is about 0.8 

km/s, measured at ∆r=-8 mm

4. The amplitude of poloidal flow 

driven by RS is really smaller than 

LCO

5. The diamagnetic force might be 

one of candidates 
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1. Evolution of turbulence 

magnitude across I-H transition 

measured with probe 

2. The negative value of ∂PAT/∂t 

means turbulence crash

3. PET was estimated by 

PET=Rs∂Vθ/∂t, which is not 

correlated with turbulence crash

4. The diamagnetic flow suddenly 

rises, consistent with the 

turbulence crash 
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1. Evolution of diamagnetic flow 

measured with probe 

2. The growth rate of pressure 

gradient is comparable with ion-

ion collisionality

3. dEr/dt is in phase with the 

growth rate of ∇Pe/ne

4. There is a possible link between 

the diamagnetic driving and the 

LCO flow

5. The growth rate of diamagnetic 

flow is comparable with ion-ion 

collisionality
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Part IV

Reduction of heating power for accessing the H 

mode with a kink-like MHD crash
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Example of L → I → L  &  L → I→H transition
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� With marginal heating power (PNBI=1 MW),  I-phase appears frequently
�An MHD mode crash is often seen before L → I  and I → H transition
� It seems that the I → H transition needs a MHD crash  (in the I-phase) 
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Increasing Er and ∂∂∂∂Pe/∂∂∂∂r induced by a MHD crash
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� The coherent mode appears before the L-I or  the I-H transition 

� The mode frequency is 10-15 kHz and it has electromagnetic characteristics

� The time scale of mode crash is about 0.2-0.3 ms, close to 1/νii

� The increasing edge Er and ∂Pe/∂r induced by a MHD crash before L-I or I-H 
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Properties of the mode  internal kinky mode

No phase inversion 

seen in the SXR signals, 

suggesting a kink mode.

m/n=1/1, 2/2 developed

m/n=1/1,2/2 grew/ crash

H-mode w/o MHDs
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� The mode crash prior to the H mode about 1-2 ms

� The core Te/ne reduces, meanwhile the edge Te/ne rises (ECE and HCN) 

� It is clear to see the plasma profile becomes flat after a mode crash

� Edge pressure gradient over a threshold and the mean shear flow increase largely to 

suppress turbulence, then trigger the H mode
Y. Xu, J. Cheng, et al PPCF 57 014028 (2015)
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� The mode appears at L-I transition under the NBI and ECRH heating 

� The mode disappears with increasing ECRH heating added to the same NBI power

� The higher heating power can cause the I-H transition without a MHD crash
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Evolution of Te/ne profiles without mode crash
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� Mode disappears in the higher heating power (ECRH+NBI=1.5 MW

� The core and edge simultaneously rises approaching the H mode phase 

� Edge pressure gradient maybe have a threshold value, over which the strong mean 

flow driven by pressure gradient directly deform eddy structure to trigger H mode

� The role of edge pressure gradient (ion pressure gradient) on the I-H transition 
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Reduction of heating power by the MHD crash
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� Statistics results over 50 shots with and w/o mode crash

� In low heating power, the additional energy released by the MHD crash plays a 

critical role on the I-H

� This fact enlightens us  to use the additional energy released by the internal kink 

mode to trigger H mode in the limited heating power case, such as in ITER

J. Cheng, Y. Xu, C. Hidalgo, et al  will be submitted  (2016)
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� Statistics results between decay time of mode and the heating power with and 

w/o mode crash

� The decay time is defined as 1/e of magnitude

� The time scale of mode crash is in the range of 0.2-0.6 ms for I-H transition  

� The fast crash can evokes substantial energy release from the core to plasma 

boundary, increasing edge gradient and ErxB flow shear
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� Under the same power NBI (PNBI=1.0 MW, no ECRH)

� The line-averaged density in the range of (1.8-2.2) ×1019m-3

� The mode routinely appears prior to the I-H transition 

� The effect of mode crash on the line-averaged density, but the slower crash of the mode 

has no significant effect on the line-averaged density and edge pressure gradient

� The larger MHD crash helps the I-H transition at the higher density with the same 

heating power (limited power) 
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Possible interpretation:

For high density plasmas, at fixed heating power the higher the plasma density, the 

more additional power (from MHD crash) needed to trigger the I → H transition,  

consistent with scaling of H-mode threshold power (Ryter, NF2013,  Ma, NF2012).

_

Change of MHD amplitudes with increasing ne
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LCO weaker with higher heating power
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� Under the different heating power (P=0.8-2.5 MW), the similar ne (ne=1.6-1.8x1019m-3) 

� LCO lasting time reduces with the higher heating power

� Heating power over the threshold, there should be no LCO appearing 

� How to evolution of the edge parameters, Te/ne profile in the high heating case?
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Summary

� The toroidal symmetry of GAMs and LFZF  was identified on HL-2A

� Energy transfer rate increases when heating power increases

� Two types of LCO was observed on HL-2A, J-LCO is different from LFZF

� The pressure gradient induced diamagnetic drift is a dominant contributor to 

the radial electric field in the I-phase of type-J LCOs-H transitions

� The conditions for the observed I-H transitions  are identified

� The rapid rise of edge pressure gradient and E×B shear induced by the mode 

crash is responsible for the I-H transition

� The additional energy excluded by kink-like mode crash can help to 

stimulate I-H tarnation 
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Thanks for your attention


